
Chapter Six
Numerical Methods

In previous chapters we have discussed methods of constructing the solutions for single
ordinary differential equations and for systems of first order equations. In particular, we
have considered initial value problems of the form

y ��t� � F�t, y�t��, 0 � t � T, �1�

y�0� � y0.

as well as the more difficult problem for dynamical systems
x ��t� � F�t, x�t�, y�t��, 0 � t � T,

y ��t� � G�t, x�t�, y�t��, �2�

x�0� � x0, y�0� � y0.

We saw that although it may be possible to determine that a solution exists, at least locally,
it may not be possible to construct this solution in terms of elementary functions. In such
cases we may be forced to resort to approximating the solution to the problem by means of
a numerical method.

Here we are going to present only the simplest numerical scheme (Euler’s method) just
to illustrate how numerical methods are developed. With the advent of computer languages
like Maple, Matlab and Mathematica, numerical methods for solving differential equations
are available as packaged software so there is no need to write your own programs to
implement numerical schemes. On the other hand, it is useful to have some idea of what
the packaged programs are doing.

1. Terminology
A function, y�t�, which satisfies the conditions of the initial value problem �1� is what we
have previously referred to as the (possibly) unique particular solution of the initial value
problem. Here it will be referred to as an exact solution for �1� in order to distinguish
between the analytic solution and the numerical approximation to he analytic solution. In
order to construct an approximation for y�t� it will be convenient to define a partition of the
interval �0, T� by letting tk � k� T

N � for k � 0, 1, . . . , N. Then �y0, . . . , yN� is called an
approximate solution for �1� on the partition, PN � �t0, . . . , tN�, if, for each k, |y�tk� � yk | tends
to zero as N tends to infinity.

We define the local truncation error for our approximate solution as the difference
Ek � |y�tk�1� � yk�1 | assuming that y�tk� � yk. That is, Ek is the error made at the step where
we compute yk�1, assuming that the solution is correct up to the point yk. On the other hand,
the accumulated error is defined as ek � |y�tk� � yk | assuming only that y�0� � y0. That is, ek

is the the error that is accumulated up to computing yk, starting with the correct initial value
but allowing errors at each subsequent step up to the k-th. Similar terminology applies to
the dynamical system �2�. We now describe some algorithms by means of which an
approximate solution can be constructed.

2. Numerical Methods for Constructing Solutions
Taylor’s theorem asserts that for y�t� sufficiently smooth, we have
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y�tk�1� � y�tk� � y ��tk�h � 1
2

y ���tk�h2 � 1
3!

y�3��tk�h3 �. . .

where h � T
N . Then we can approximate as follows,

y�tk�1� � y�tk� � y ��tk�h.

Since it follows that the solution to �1� satisfies, y ��tk� � F�tk, y�tk��, we have the following
algorithm for constructing approximate values yk, starting from the initial value y0,

yk�1 � yk � hF�tk, yk�, k � 0, 1, . . . , N � 1. �3�

This algorithm is known as Euler’s method for approximating the solution to �1�.
Applying the same approach to the dynamical system �2�, we have

x�tk�1� � x�tk� � x ��tk�h

y�tk�1� � y�tk� � y ��tk�h

Then it follows from �2� that approximate solution values can be computed from
xk�1 � xk � F�tk, xk, yk�h

yk�1 � yk � G�tk, xk, yk�h �4�

Here we begin with the initial values x0, y0 and k runs from zero to N.

Examples
1. Consider the initial value problem

y ��t� � 3t2y2 y�0� � 1.

This equation is separable and the exact solution to the initial value problem is found to be

y�t� � 1
1 � t3 .

We shall attempt to approximate the exact solution on the interval �0, 1�. Note that the exact
solution becomes undefined at t � 1 although there is nothing in the initial value problem to
allow us to anticipate this if the exact solution is not known. We have h � 1/N and
�t0, . . . , tN� � �0, h, 2h, . . . , 1� for various values of N. Using Euler’s method �3�, we have

y0 � 1

y1 � y0 � 3�t0
2y0

2�h

y2 � y1 � 3�t1
2y1

2�h

�

yN � yN�1 � 3�tN�1
2 yN�1

2 �h

For N � 4, this would give P4 � �0, . 25, . 50, . 75, 1� and
y0 � 1

y1 � 1 � 0

y2 � 1 � 3�. 252��12��. 25� � 1. 05

y3 � 1. 05 � 3�. 52��1. 052��. 25� � 1. 26

y4 � 1. 26 � 3�. 752��1. 252��. 25� � 1. 92

For N � 8, we have the partition P8 � �0, . 125, . 25, . 375, . 50, . 625, . 75, . 875, 1� and
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y0 � 1

y1 � 1 � 0

y2 � 1 � 3�. 1252��12��. 125� � 1. 006

y3 � 1. 006 � 3�. 252��1. 0062��. 125� � 1. 03

y4 � 1. 03 � 3�. 3752��1. 032��. 125� � 1. 086

y5 � 1. 086 � 3�. 52��1. 0862��. 125� � 1. 197

y6 � 1. 197 � 3�. 6252��1. 1972��. 125� � 1. 407

y7 � 1. 407 � 3�. 752��1. 4072��. 125� � 1. 825

y8 � 1. 825 � 3�. 8752��1. 8252��. 125� � 2. 781

The values for the exact solution on P8 are as follows:

y0 � 1

y�. 125� � 1
1 �. 1252 � 1. 015 9

y�. 25� � 1
1 �. 252 � 1. 066 7

y�. 375� � 1
1 �. 3752 � 1. 163 6

y�. 5� � 1
1 �. 52 � 1. 333 3

y�. 625� � 1
1 �. 6252 � 1. 641

y�. 75� � 1
1 �. 752 � 2. 285 7

y�. 875� � 1
1 �. 8752 � 4. 266 7

y�1� � �

The local truncation errors Ek appear to be somewhat smaller when N � 8 than when N � 4,
although in neither case are the Ek

� s particularly small. We can show that Ek is proportional
to the step size h, so as h tends to zero, the errors decrease.

2. Consider the dynamical system
x ��t� � y�t�, x�0� � 0,

y ��t� � �4x�t�, y�0� � 4.

The exact solution for this initial value problem for the dynamical system is easily found to
be 4x2 � y2 � 4, so the orbit is an ellipse. The numerical solution is generated by the Euler’s
method algorithm for systems,

x0 � 0 y0 � 4

xn�1 � xn � ynh yn�1 � yn � 4xnh

The first few steps of this computation proceed as follows
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x0 � 0 y0 � 4

x1 � 0 � 4h y1 � 4 � 0 � h

x2 � 4h � 4h y2 � 4 � 4�4h�h

x3 � 8h � 4h y3 � 4 � 4�4h�h � 4�8h�h

� �

Clearly, this computation is very tedious and can most efficiently carried out using a
computer. It is worth noting that although the exact solution trajectory is an ellipse, a closed
curve, the numerical solution will be seen to be not a closed curve, but rather a spiral if h is
larger than about . 001. For smaller step sizes, h, the trajectory appears to be a closed
curve as it should.

Exercises
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